Publicaciones etiquetadas con: Evento Carrington

¿TORMENTA SOLAR PARA EL 2 DE AGOSTO DE 2016?

Para empezar les comparto una foto del reporte de la NOAA sobre la actividad solar para el 1 de Agosto de 2016.

Prediccion de NOAA para agosto 1 2016

Aunque ciertas publicaciones dicen que algunos astrónomos predicen que pudiera haber una gran tormenta solar el 2 de agosto de 2016, pudiera ser, pero, a no ser que nos engañen, no  parece muy factible, puesto que el Sol está tranquilo el día de hoy 1 de agosto de 2016.

Es bueno prevenirnos, pero no dejarnos llevar por el pánico que están originando publicaciones amarillistas.

Las tormentas solares son frecuentes, suceden todo el tiempo, para que nos afecten tienen que suceder varios eventos sincronizados:

  1. Que la tormenta sea enorme
  2. Que venga dirigida directamente a la Tierra, dentro de todo el espacio que rodea al Sol, somos un pequeño punto. De que puede suceder, sí, puede, es posible, pero con muy pocas probabilidades.
  3. Que la tormenta dirigida a la Tierra en efecto choque con ésta durante su traslación alrededor del Sol. También pude suceder.

TORMENTAS SOLARES EN EL PASADO

articulosol_960x648_8d9ff9ce

En la historia de nuestro planeta seguramente esos tres eventos han confluido, provocando grandes catástrofes, quizá alguno(s) de los “Soles”, que narra la Leyenda de los Cuatro Soles de los aztecas o mexicas, haya(n) sido causado(s) por una gran tormenta solar.

Ver más datos en: https://2012profeciasmayasfindelmundo.wordpress.com/2014/08/04/la-leyenda-de-los-cuatro-soles/

En Natgeo, publicaron hace 4 años el siguiente artículo, que podría aplicarse al presente, salvo que no estamos en un período de máximo solar (ciclo de cada 11 años, en que hay más tormentas solares, eyecciones de masa coronal y ese tipo de eventos solares.

http://www.nationalgeographic.com.es/ciencia/grandes-reportajes/la-amenaza-solar-2_6065

 

22 de junio de 2012

“Previsión de la meteorología espacial para los próximos dos o tres años: tormentas solares, con posibles apagones catastróficos en la Tierra. ¿Estamos preparados?

Foto: Observatorio de Dinámica Solar (SDO) de la NASA

 

EL EVENTO CARRINGTON

El jueves 1 de septiembre de 1859 Richard Carrington, un fabricante de cerveza de 33 años aficionado a la astronomía, acudió a su observatorio particular cerca de Londres. Abrió la rendija de la cúpula y ajustó su telescopio para proyectar sobre una pantalla una imagen de 28 centímetros del Sol. Estaba dibujando manchas solares sobre un papel dispuesto encima de la pantalla cuando, de pronto, ante sus ojos aparecieron «dos brillantes haces de luz blanca» en medio del enorme grupo de manchas solares que había trazado.

Mientras esto sucedía, la aguja que pendía de un hilo de seda en el magnetómetro del Observatorio Kew de Londres comenzó a bailar frenéticamente. Antes del amanecer del día siguiente, enormes luminiscencias rojas, verdes y púrpuras iluminaban los cielos en latitudes tan meridiona­les como Hawai y Panamá. Campistas en las Mon­­tañas Rocosas, confundiendo la aurora boreal con el alba, empezaron a prepararse el desayuno.

La fulguración que Carrington había observado fue el anticipo de una supertormenta solar, una gigantesca explosión electromagnética que lanzó a toda velocidad hacia la Tierra miles de millones de toneladas de partículas cargadas. Cuando la onda invisible chocó con el campo magnético de nuestro planeta, generó corrientes eléctricas que se expandieron repentinamente a través de las líneas telegráficas. Varias estaciones quedaron fuera de servicio, aunque algunos telegrafistas vieron que podían desconectar las baterías y retomar las operaciones utilizando solo la electricidad geomagnética. «Estamos trabajando únicamente con la corriente de la aurora boreal, ¿cómo recibes lo que he escrito?», telegrafió un operador de Boston a otro de Portland, Maine. «Mucho mejor que con las baterías», le contestó.

Los operadores de los sistemas de comunicaciones y de las redes de trasmisión eléctrica ac­­tuales no habrían mantenido esa calma. Nunca se ha vuelto a producir una supertormenta tan intensa como la de 1859, por lo que es difícil cal­­cular qué consecuencias tendría un fenómeno de tal magnitud en el mundo actual, mucho más interconectado que el de entonces. Pero podemos hacernos una idea recordando el apagón de Quebec del 13 de marzo de 1989, cuando una tormenta solar cuya intensidad fue una tercera parte inferior a la que presenció Carrington dejó fuera de servicio, en dos minutos, una red eléctrica que suministraba energía a más de seis mi­­llones de clientes. Una tormenta como la de Carrington podría inutilizar más transformadores de los que las compañías eléctricas tienen de reserva, y dejar a millones de usuarios sin luz, agua potable, tratamiento de aguas residuales, calefacción, aire acondicionado, combustible, servicio telefónico o alimentos y medicamentos perecederos durante los meses necesarios para fabricar e instalar otros nuevos. Un informe reciente de la Academia Nacional de Ciencias estadounidense estima que una tormenta así podría causar una destrucción económica equivalente a 20 huracanes Katrina, con un coste de uno a dos billones de dólares solo el primer año y cuya recuperación llevaría una década.

EN 2012 HUBO UN PERÍDO DE MÁXIMA ACTIVIDAD SOLAR (SUCEDE CADA 11 AÑOS)

«No podemos predecir qué hará el Sol con una anticipación de más de unos pocos días», se lamenta Karel Schrijver, del Laboratorio Solar y de Astrofísica Lockheed Martin en Palo Alto, California. Este año se espera el comienzo de un período de máxima actividad solar, y los centros de meteorología espacial están contratando más personal y esperando que no ocurra lo peor. «In­­tentamos comprender los efectos que la actividad solar puede tener en nuestra sociedad y cuál sería el impacto en el peor de los casos –añade–. Una vez identificada una amenaza de esta magnitud, lo correcto es prepararse. No hacerlo po­­dría tener unas consecuencias imperdonables.»

Pocos objetos nos resultan tan familiares como el Sol –siempre está allí, en el cielo, cada día soleado– y sin embargo pocos hay que sean tan extraños. Basta mirar a través de un telescopio solar, y el cotidiano disco amarillo se transforma en un fantástico mundo en movimiento, en el que protuberancias del tamaño de un planeta se elevan en el espacio como medusas brillantes, para enroscarse sobre sí mismas y regresar horas o días más tarde con una danza sinuosa, como atraídas por una fuerza invisible.

El Sol no es sólido, ni líquido, ni gaseoso. Está constituido por plasma, «el cuarto estado de la materia», que se forma cuando los electrones son arrancados de los átomos y quedan libres junto a los protones. Todas esas partículas cargadas convierten el plasma solar en un poderoso conductor de la electricidad. El Sol, además, está plagado de campos magnéticos. La mayoría se encuentran bajo su superficie, pero algunos tubos de flujo magnético (haces de líneas del campo magnético), cuyo grosor puede ser superior al diámetro de la Tierra, emergen a la superficie en forma de manchas solares, marcando el lugar donde el magnetismo es más intenso. Esta actividad magnética crea las sinuosas coreografías que se desarrollan en la atmósfera del Sol y genera el viento solar, que arroja con fuerza al espacio millones de toneladas de plasma a una velocidad de 700 kilómetros por segundo.

Toda esta actividad está causada por la sorprendente e intrincada maquinaria de una estrella común. El núcleo del Sol, una incandescente esfera de plasma a 15 millones de grados centígrados y seis veces más densa que el oro, fusiona cada segundo 700 millones de toneladas de protones y los transforma en núcleos de helio, liberando en el proceso la energía de 10.000 millones de bombas de hidrógeno. El núcleo solar palpita suavemente, expandiéndose cuando la velocidad de fusión aumenta y contrayéndose cuando disminuye. Además de este profundo y lento palpitar se registran otros muchos ritmos, que van desde el ciclo de 11 años que caracteriza a las manchas solares hasta otros que abarcan siglos.

LA ENERGÍA DEL SOL

La energía producida por la fusión en el núcleo del Sol es conducida al exterior por fotones de alta energía. La materia es tan increíblemente densa en esta zona radiativa que los fotones tardan más de 100.000 años en llegar a la zona con­­vectiva, y para entonces habrán recorrido el 70 % del camino desde el centro del Sol hacia el exterior. Al cabo de un mes los fotones emergen a la fotosfera, la parte del Sol que vemos desde la Tierra. Una vez allí, tardan apenas ocho minutos en alcanzar la Tierra en forma de luz solar.

Este gigantesco horno termonuclear hace mu­­chísimo ruido. «El Sol suena como una campana, en millones de tonos diferentes», dice Mark Miesch, del Centro Nacional de Investigación Atmosférica, en Boulder, Colorado. Esos tonos generan en la superficie solar unas ondas que los expertos en heliosismología estudian para cartografiar las corrientes presentes en el interior de la zona convectiva. Los sensores heliosísmicos del Observatorio de Dinámica Solar (SDO), satélite de la NASA, han permitido recientemente detectar haces de líneas del campo magnético a una profundidad de 65.000 kilómetros bajo la superficie solar y predecir su emergencia, días más tarde, en forma de manchas solares.

CÓMO SE FORMAN LAS TORMENTAS SOLARES

Estos datos proporcionan información crucial acerca de cómo se forman las tormentas solares. El Sol, rodeado de polo a polo por las líneas del campo magnético global, funciona como una gi­­gantesca dinamo. Las líneas de los campos magnéticos locales, entretejidas con el plasma en la zona convectiva, se retuercen, se doblan y emergen a la superficie, formando unos bucles que el plasma caliente y luminoso hace visibles. Cuando estos bucles coronales se entrecruzan, pueden causar las tremendas explosiones de plasma llamadas fulguraciones solares. Estas erupciones, que liberan una energía equivalente a cientos de millones de megatones de TNT, emiten rayos X y gamma al espacio y aceleran partículas cargadas hasta casi la velocidad de la luz.

El conocido como evento de Carrington fue una poderosa fulguración solar que produjo la segunda de un raro caso de dos eyecciones de masa coronal (EMC, gigantesca erupción de plasma caliente lanzado al espacio) consecutivas. La primera EMC tardó probablemente de 40 a 60 horas en llegar a la Tierra, abriendo paso a través del viento solar a la segunda, que nos alcanzó en menos de 17 horas. El efecto combinado del impacto comprimió la magnetosfera terrestre (la región donde el campo magnético del planeta interactúa con el viento solar) reduciendo su altitud normal de 60.000 kilómetros a 7.000 y anulando temporalmente los cinturones de radiación de Van Allen que rodean nuestro planeta. Las partículas cargadas que penetraron en la alta atmósfera generaron intensas auroras sobre gran parte de la Tierra. Hubo gente que pensó que su ciudad se estaba incendiando.

¿EVENTOS COMO EL CARRINGTON OCURREN CADA VARIOS SIGLOS? DAÑOS QUE PUEDEN CAUSAR

Probablemente una supertormenta del nivel de la fulguración de Carrington solo ocurra una vez cada varios siglos. Pero incluso tormentas de magnitud mucho menor pueden causar un daño considerable, especialmente a medida que los humanos nos hacemos cada vez más dependientes de las tecnologías que utilizan satélites. Las tormentas solares alteran la ionosfera, la capa de la atmósfera terrestre donde se forman las auroras, situada a más de 100 kilómetros de la superficie de la Tierra. Cuando los casi 11.000 vuelos comerciales que atraviesan cada año la región del polo Norte están por encima de los 80 grados de latitud –es decir, fuera del alcance de los satélites de comunicaciones que orbitan sobre el ecuador–, dependen de las señales de radio de onda corta que rebotan en la ionosfera. Cuando la actividad solar altera la ionosfera e interrumpe las comunicaciones de onda corta, los pilotos se ven obligados a cambiar la ruta, lo que puede suponer un coste de unos 80.000 euros por vuelo. La alteración de la ionosfera también afecta a las señales de GPS, ya que provoca errores de posición de hasta 50 metros. Eso significa que la supervisión y cartografía por satélite quedan suspendidas, las plataformas petrolíferas flotantes tienen dificultades para mantener su posición sobre el punto de extracción y los pilotos no pue­­den fiarse de los sistemas de aterrizaje por GPS.

También la radiación ultravioleta emitida du­­rante las fulguraciones solares puede afectar las órbitas de los satélites, puesto que al calentar la atmósfera, frena su movimiento. La NASA calcula que cuando el Sol emite fulguraciones, la Estación Espacial Internacional desciende más de 300 metros al día. Las tormentas solares podrían también dañar los componentes electrónicos de los satélites de comunicaciones y convertirlos en «zombis», orbitando a la deriva.

REDES ELÉCTRICAS

A diferencia de los satélites espaciales, la mayor parte de las redes eléctricas no tienen en su estructura protecciones contra la embestida de una poderosa tormenta geomagnética. Dado que los grandes transformadores están en contacto directo con el suelo, estas tormentas pueden inducir corrientes capaces de sobrecalentarlos, incendiarlos o causar su explosión.

Las consecuencias podrían ser catastróficas. Según John Kappenman, de Storm Analysis Consultants, que estudia el impacto de la meteorología espacial sobre las redes eléctricas, una tormenta solar como la de mayo de 1921 podría causar un apagón en la mitad de América del Norte. Una similar a la de 1859 podría destruir la red eléctrica de todo el continente y llevar a millones de personas a vivir como en la era preeléctrica durante semanas o quizá meses. En palabras de Kappenman, «estamos jugando a la ruleta rusa con el Sol».

AHORA MONITOREAMOS AL SOL

Al menos no estamos jugando a ciegas. En 1859 había pocos instrumentos para estudiar el Sol. Hoy los científicos realizan una monitorización constante de nuestra estrella mediante una im­­presionante flota de satélites que pueden tomar imágenes en rayos X y ultravioletas, bloqueados por la atmósfera terrestre. La antigua sonda espacial ACE (Advanced Composition Explorer) monitoriza el viento solar desde una órbita a 1,5 millones de kilómetros de la Tierra en dirección al Sol. El Observatorio Solar y Heliosférico (SOHO) lleva 12 detectores que registran toda clase de datos, desde protones de alta velocidad en el viento solar hasta oscilaciones de baja velocidad. Las sondas STEREO, un par de satélites que orbitan alrededor del Sol, producen imágenes tridimensionales que revelan cómo se forman y proyectan al espacio las eyecciones de masa coronal (EMC). Por su parte, el Observatorio de Dinámica Solar (SDO), en órbita geosincrónica desde febrero de 2010, descarga a diario 1,5 terabytes de datos sobre la atmósfera, las oscilaciones y los campos magnéticos solares.

Pero aún queda un largo camino por recorrer. «La meteorología espacial está como lo estaba la terrestre hace 50 años» dice Douglas Biesecker, del Centro de Predicción Meteorológica Espacial de la NOAA, en Boulder, Colorado. Como el impacto de una tormenta solar depende en parte de cómo se alinee el campo magnético del Sol con el de la Tierra, los científicos no pueden estar seguros sobre su intensidad hasta que alcanza el satélite ACE, lo que a veces ocurre apenas 20 minutos antes de golpear en la Tierra. Por eso están centrándose en pronosticar la in­­tensidad potencial de esas tormentas y el momento probable de su llegada a la Tierra, para así tener tiempo de proteger los sistemas vulnerables.

ENLIL PREDICE TORMENTAS SOLARES Y EYECCIONES DE MASA CORONAL (EMC)

El pasado octubre la NOAA inauguró un nuevo modelo numérico llamado Enlil –por el dios sumerio de los vientos–, que predice cuándo una EMC impactará en la Tierra con un margen de error de seis horas, lo que duplica la precisión de los anteriores pronósticos. La predicción efectuada por Enlil para la llegada de una tormenta importante el 8 de marzo de este año tuvo una desviación de tan solo 45 minutos. Esa tormenta resultó finalmente poco dañina. Podríamos no tener tanta suerte la próxima vez.

«En este ciclo solar  (2012/2013) todavía no nos hemos enfrentado a ningún acontecimiento importante –apunta Biesecker–. Pero ahora sabemos que cuando se produzca uno, estaremos en condiciones de reconocerlo y de prepararnos.»

 

https://www.spaceweatherlive.com/es/informes/prediccion-3-dias

Categorías: ASTRONOMÍA, EL SOL Y TORMENTAS SOLARES, LEYENDA DE LOS CUATRO SOLES, NASA, NOTICIAS, Uncategorized | Etiquetas: , , , , , , , , , , , , , | Deja un comentario

TORMENTA SOLAR EXTREMA VIDEO – NO HUBO INFORMACIÓN

Muy cerca: la súper tormenta solar de julio de 2012

llamarada-solar

llamarada-solar

23 de julio de 2014: Si un asteroide lo suficientemente grande como para afectar a la civilización moderna y llevarla de nuevo al siglo XVIII apareciera desde el espacio profundo y pasara zumbando por el sistema Tierra-Luna, este paso cercano abarcaría instantáneamente todos los titulares de los periódicos del mundo.

LOS MEDIOS NO INFORMARON DE LA TORMENTA SOLAR EXTREMA

Hace dos años, la Tierra estuvo muy cerca de experimentar algo tan peligroso como eso, pero la mayoría de los periódicos no lo mencionaron. El objeto de impacto fue una tormenta solar extrema, la más poderosa registrada en más de 150 años. “Si nos hubiera golpeado, todavía estaríamos recogiendo los pedazos”, dice Daniel Baker, de la Universidad de Colorado.

.

En un video de ScienceCast se relata el paso cercano de una súper tormenta solar que tuvo lugar en julio de 2012. Reproducir el video, en idioma inglés.

.

.

Baker, junto con colegas de la NASA y de algunas universidades, publicó un estudio trascendental sobre la tormenta en la edición de diciembre de 2013 de la revista Space Weather (Clima Espacial, en idioma español). Su trabajo, denominado “El Principal Evento de Erupción Solar en julio de 2012” (The Major Solar Eruptive Event in July 2012, en idioma inglés), describe cómo una poderosa eyección de masa coronal (EMC, por su sigla en idioma español, y coronal mass ejection o CME, por su sigla en idioma inglés) desgarró la órbita de la Tierra el 23 de julio de 2012.

.

Por suerte, la Tierra no estaba allí. En cambio, la nube de la tormenta sacudió a la nave espacial STEREO-A. “He dejado nuestros estudios recientes más convencido que nunca de que la Tierra y sus habitantes fuimos increíblemente afortunados de que la erupción que tuvo lugar en el año 2012 haya ocurrido en ese preciso momento”, señala Baker. “Si la erupción se hubiera producido apenas una semana antes, la Tierra hubiera estado en la línea de fuego”.

.

Las tormentas solares extremas representan una amenaza para todas las formas de alta tecnología. Comienzan con una explosión (una “llamarada solar”) en el “toldo” magnético de una mancha solar. Los rayos X y la radiación UV extrema alcanzan la Tierra a la velocidad de la luz, ionizando así las capas superiores de nuestra atmósfera; los efectos colaterales de este “PEM solar” incluyen apagones de radios y errores de navegación de los GPS (Global Positioning System, en idioma inglés, o Sistema de Posicionamiento Global, en idioma español).

.

Algunos minutos hasta algunas horas más tarde, llegan las partículas energéticas. Moviéndose apenas más lentamente que la luz misma, los electrones y los protones acelerados por la explosión pueden electrificar satélites y dañar sus sistemas electrónicos. Luego llegan las EMC, nubes de plasma magnetizado que pesan mil millones de toneladas, a las cuales les toma un día o más cruzar la frontera entre el Sol y la Tierra.

.

Los analistas creen que un ataque directo de una EMC extrema como la que pasó cerca de la Tierra en julio de 2012 podría causar apagones de energía en todo el mundo, inhabilitando así todo lo que se conecta a los enchufes de pared. La mayoría de las personas ni siquiera podrían hacer correr el agua de los sanitarios porque el suministro de agua urbano depende principalmente de bombas eléctricas. Antes de julio de 2012, cuando los investigadores hablaban de tormentas solares extremas, su punto de referencia era el icónico Evento Carrington, el cual tuvo lugar en septiembre del año 1859 y que recibe su nombre por el astrónomo inglés Richard Carrington, quien verdaderamente vio la inspiradora llamarada con sus propios ojos. Durante los días posteriores a su observación, una serie de poderosas EMCs golpearon a la Tierra de manera directa con una potencia que no se había sentido antes, ni desde entonces.

.

Intensas tormentas geomagnéticas dieron inicio a auroras boreales tan al sur como Cuba y produjeron chispas en las líneas telegráficas globales, lo que ocasionó incendios en las oficinas telegráficas y, en consecuencia, inhabilitó la “Internet victoriana”. Un informe realizado por la Academia Nacional de las Ciencias (National Academy of Sciences, en idioma inglés) detalla las consecuencias de las tormentas solares extremas.  Más información

.

En la actualidad, una tormenta similar podría tener efectos catastróficos. Según un estudio llevado a cabo por la Academia Nacional de las Ciencias (National Academy of Sciences, en idioma inglés), el impacto económico total podría exceder los 2 billones de dólares ó lo que equivale a 20 veces más que lo que costó el huracán Katrina.

.

Podría llevar años reparar los transformadores de muchas toneladas dañados por una tormenta como esa. “En mi opinión, la tormenta que tuvo lugar en julio de 2012 fue en todo sentido al menos tan fuerte como el Evento Carrington de 1859”, dice Baker. “La única diferencia es que no nos azotó; pasó cerca”.

.

En febrero de 2014, el físico Pete Riley, de la compañía Predictive Science Inc., publicó un artículo en la revista Space Weather titulado: “Sobre la probabilidad de que ocurran eventos extremos del clima espacial”. En él, analizó registros de tormentas solares que ocurrieron hace más de 50 años. Al extrapolar la frecuencia de las tormentas comunes a las extremas, Riley calculó las probabilidades de que una tormenta de clase Carrington golpee la Tierra en los próximos diez años. La respuesta es: 12%. “Inicialmente, me sorprendió bastante que las probabilidades fueran tan altas, pero las estadísticas parecen ser correctas”, afirma Riley. “Es una cifra que da qué pensar”. En su estudio, Riley observó cuidadosamente un parámetro llamado Dst, la abreviatura de “disturbance – storm time”, o “tiempo alteración – tormenta”, en idioma español.

.

Este es un número que se calcula a partir de las lecturas de un magnetómetro ubicado alrededor del ecuador. Esencialmente, mide cuán fuerte se sacude el campo magnético de la Tierra cuando lo golpea una EMC. Cuanto más negativo se torna el Dst, peor es la tormenta. Las tormentas geomagnéticas comunes, que producen auroras boreales alrededor del Círculo Ártico, pero que sin embargo no ocasionan daño alguno, registran un Dst = -50 nT (nanoTesla).

.

La peor tormenta geomagnética de la Era Espacial, que dejó sin energía eléctrica a Québec en marzo de 1989, registró un Dst = -600 nT. Los cálculos modernos del Dst para el Evento Carrington varían su rango desde -800 nT a un impactante -1750 nT.

LA TORMENTA SOLAR DE 2012 Y EL EVENTO CARRINGTON

En su artículo de diciembre de 2013, Baker y sus colaboradores calcularon el Dst para la tormenta que tuvo lugar en julio de 2012. “Si esa EMC hubiera golpeado a la Tierra, la tormenta geomagnética que hubiera provocado hubiera registrado un Dst de -1200, comparable con el Evento Carrington y dos veces más perjudicial que el apagón de marzo de 1989 que tuvo lugar en Québec”.

.

OBSERVATORIO SOLAR STEREO-A

La razón por la cual los investigadores saben tanto sobre la tormenta que se produjo en julio de 2012 es porque, de todas las naves espaciales del sistema solar que ella podría haber golpeado, esta tormenta azotó un observatorio solar. STEREO-A está equipada casi idealmente para medir los parámetros de un evento como ese. “Los interesantes datos que se obtuvieron por medio de la nave STEREO excedieron, por mucho, las relativamente magras observaciones que pudo realizar Carrington en el siglo XIX”, destaca Riley. “Gracias a STEREO-A sabemos mucho sobre la estructura magnética de la EMC, así como sobre la clase de ondas de choque y las partículas energéticas que produjo y, quizás lo más importante de todo, la cantidad de EMCs que la precedieron”.

.LA TORMENTA SOLAR PERFECTA

Resulta que la región activa que es responsable de producir la tormenta de julio de 2012 no lanzó solamente una EMC hacia el espacio, sino muchas. Algunas de estas “allanaron el camino” para la súper tormenta. Un trabajo que llevaron a cabo la física espacial de la Universidad de California en Berkeley, Janet G. Luhmann, y un ex postdoctorado, Ying D. Liu, y que fue publicado en la edición de marzo de 2014 de Nature Communications, describe los procesos: La EMC del 23 de julio fue en verdad dos EMCs separadas por solamente 10 a 15 minutos.

.

Esta EMC doble viajó a través de una región del espacio que había sido “limpiada” por otra EMC cuatro días antes. Como resultado, las nubes de tormenta no fueron desaceleradas tanto como es usual por su tránsito a través del medio interplanetario. “Es probable que el Evento Carrington también haya estado asociado con múltiples erupciones y esto puede resultar ser un requisito clave para los eventos extremos”, destaca Riley. “De hecho, parece que los eventos extremos pueden necesitar una combinación ideal de una cantidad de características clave para producir la ‘tormenta solar perfecta’”. “Los condicionamientos previos por parte de múltiples EMCs parecen ser muy importantes”, agrega Baker.

.

Una pregunta común sobre este evento es: ¿Cómo sobrevivió la sonda STEREO-A? Después de todo, se supone que las tormentas de clase Carrington son mortalmente peligrosas para las naves espaciales y los satélites. Sin embargo, STEREO-A no solamente capeó la tormenta sino que también continuó tomando datos de alta calidad en medio de ella. “Las naves espaciales como las gemelas STEREO y el Observatorio Solar y Heliosférico (Solar and Heliospheric Observatory, en idioma inglés), que forman parte de una misión conjunta entre la Agencia Espacial Europea, o ESA, por su acrónimo en idioma inglés, y la NASA, fueron diseñadas para operar en el medio ambiente que se encuentra fuera de la magnetosfera de la Tierra, y eso implica incluso impactos bastante intensos relacionados con las EMC”, señala Joe Gurman, el científico del proyecto STEREO, en el Centro Goddard para Vuelos Espaciales (Goddard Space Flight Center, en idioma inglés). “Hasta donde sé, nada grave ocurrió con las naves espaciales”.

.

POR QUÉ SE SALVÓ EL STEREO-A

La historia podría haber sido diferente, dice, si STEREO-A estuviera orbitando la Tierra en vez de estar viajando a través del espacio interplanetario. “En el interior de la magnetosfera de la Tierra, un evento de EMC puede generar fuertes corrientes eléctricas”, explica. “Afuera, en el espacio interplanetario, sin embargo, el campo magnético del ambiente es mucho más débil y entonces esas peligrosas corrientes se pierden”. En resumen, la sonda STEREO-A estaba en un buen lugar para capear la tormenta. “Sin la clase de cobertura que ofrece la misión STEREO, nosotros como sociedad podríamos haber sido dichosamente ignorantes de esta notable tormenta solar”, destaca Baker. “¿Cuántas otras de esta escala han pasado cerca de la Tierra y han escapado del alcance de nuestros sistemas de detección espacial? Esta es una pregunta apremiante que necesita respuestas”.

.

Si el trabajo de Riley sigue siendo válido, hay una probabilidad del 12% de que aprendamos mucho más sobre las tormentas solares extremas en los próximos 10 años; cuando una de ellas verdaderamente azote a la Tierra. Baker dice: “Tenemos que estar preparados”.

FUENTE: http://ciencia.nasa.gov/ciencias-especiales/23jul_superstorm/

***

Aquí la pregunta sería: ¿por qué no se le informó al público de esta tormenta solar? ¿para evitar pánico innecesario, ya que no nos alcanzó?… quizás y tal vez fue bueno. ¿Por esa misma razón no nos informan de otros eventos? Puede ser, pero ¿será bueno? Yo no lo sé, tú ¿qué opinas?

Sobre tormentas solares y sus consecuencias ver:
https://2012profeciasmayasfindelmundo.wordpress.com/2012/01/25/2012-y-tormentas-solares-24-de-enero-de-2012/

***

Imágenes tomadas de internet o de los enlaces relacionados

***

¿Te gustó este post? Ponme un comentario y/o un “me gusta” eso me alienta a seguir publicando, es la única recompensa que recibo: el agrado de mis lectores; y si piensas que en verdad vale la pena,

¡COMPÁRTELO!

Sígueme en Twitter

Seguir a @serunserdeluz

También visítame en http://serunserdeluz.wordpress.com/ https://2012profeciasmayasfindelmundo.wordpress.com/about/

http://aquevineadondevoy.wordpress.com/

Categorías: ASTRONOMÍA, EL SOL Y TORMENTAS SOLARES, NASA, NOTICIAS, Uncategorized | Etiquetas: , , , , , , , , | 6 comentarios

A %d blogueros les gusta esto: